您的位置:  首页 > 技术杂谈 > 正文

SQL 也能搞复杂时序查询?使用 SQL 在 GreptimeDB 上做 Range 查询

2023-12-01 15:00 https://my.oschina.net/u/6839317/blog/10315580 格睿科技Greptime 次阅读 条评论

查询并聚合一个「给定长度的时间范围的数据」,是时序数据中常见的一种查询模式。例如 PromQL 中的 Range selector,就原生地支持了这种时序查询。但对于通用的数据库查询语言 SQL ,这类时序查询很难通过原生的 SQL 完成,所以我们在 GreptimeDB 中引入了扩展的 SQL Range 查询语法,将时序查询能力与 SQL 高度灵活的表达能力相结合,实现了 SQL 对时序数据查询的原生支持。

✨ 让数据动起来! 使用 SQL 在 GreptimeDB 上实现动态 Range 查询 https://greptime.cn/playground

🔧 点击链接加入我们的 Playground,立即体验👆

示例

我们用一个例子来介绍 Range 查询。下面这张表 temperature 记录了不同城市在不同时间的气温:

我们想查询北京从 2023 年 5 月 2 日(时间戳为 1682985600000 )以前的:

  • 每日的日平均气温;
  • 每日的周平均气温;
  • 如果某天的数据点缺失,则以前后两天平均气温均值作为这天的平均气温。

我们首先从 PromQL 的视角来看如何去写这句查询,对于两条查询,都需要以天为步长进行查询。对于日平均气温,需要向前聚合一天的数据,对于周平均气温,需要每次向前聚合一周的数据,并求出平均值。另外我们需要使用 @ 将查询时间对齐到时间戳 1682985600000

最后的查询为:

-- 日平均气温
avg_over_time(temperature{city="beijing"}[1d] @ 1682985600000) step=1d

-- 周平均气温
avg_over_time(temperature{city="beijing"}[7d] @ 1682985600000) step=1d

但上面的查询存在一些问题。PromQL 强调的是做数据的查询,但不能很好地处理查询中缺失数据点的情况,也就是如何对查询的数据作平滑。PromQL 只是存在 Lookback delta 的机制(具体见:https://promlabs.com/blog/2020/07/02/selecting-data-in-promql/#lookback-delta),用一些旧的数据来代替缺失的数据点。这样的默认行为在某些情况下并不是用户想要的。因为 Lookback delta 的机制的存在,会导致聚合的数据携带一些旧值。在默认情况下,PromQL 很难做到数据精确性的控制。并且针对我们上面提出的数据平滑要求,PromQL 也没有很好的办法完成。

如果从传统的 SQL 出发,因为 SQL 中不存在 Lookback delta 的机制,我们可以精确地控制我们数据选择和聚合的范围。所见即所得,进行比较精确的查询。

上述查询本质上是以天为单位,对每天和每周的数据做聚合。针对日平均气温,我们可以利用 date_trunc 这一 scalar 函数,该函数能够将时间截断到某一个精度上,我们使用这个函数将时间截断到天这一单位,最后再以天为单位对数据进行聚合,就能得到我们想要的结果:

-- 日平均气温
SELECT
    day,
    avg(temp),
FROM (
    SELECT
        date_trunc('day', ts) as day
        temp,
    FROM
        temperature
    WHERE
        city="beijing" and ts < 1682985600000
)
GROUP BY day;

这样也基本满足了我们的需求,但是这种查询问题在于:

  • 写起来非常繁琐,需要写子查询;
  • 应用范围有限,用这种办法只能求出日平均气温,没法求出周平均气温。因为 SQL 中的聚合要求每一条数据只能属于一个 group。但是在时序查询中,如果每次采样的时间是一星期,步长是一天的话,一条数据必然会被多个 group 使用,针对这种查询传统 SQL 无能为力;
  • 还是没办法解决空白数据填充的问题。

在上面讨论之后,我们需要思考:这种查询本质上是时序查询,但是我们所使用的 SQL——虽然有非常灵活的表达能力,但却不是专门为时序数据库设计的。我们需要一些新的 SQL 扩展语法,在 SQL 中来简单的描述这种时序查询。一些时序数据库如 InfluxDB 提供了 group by time 语法, QuestDB 提供了 Sample By 语法,这些实现为我们的 Range 查询提供了思路。下面介绍如何使用 GreptimeDB 提供的 Range 语法来进行上述查询。

-- 日平均气温
SELECT
    ts,
    avg(temp) RANGE '1d' FILL LINEAR,
FROM
    temperature
WHERE
    city="beijing" and ts < 1682985600000
ALIGN '1d';

-- 周平均气温
SELECT
    ts,
    avg(temp) RANGE '7d' FILL LINEAR,
FROM
    temperature
WHERE
    city="beijing" and ts < 1682985600000
ALIGN '1d';

我们为一个 SELECT 语句引入了一个关键字 ALIGN,代表每次时序查询的步长,ALIGN 会将时间对齐到日历上。在聚合函数后引入了一个 RANGE 关键词,代表在每次数据聚合的范围,FILL LINEAR 表示数据点为空的时候的数据填充方式,即以数据平均值填充。通过这样的方式,我们比较轻松的完成了上文所提出的几个要求。

通过 Range 查询,我们可以很优雅的在 SQL 中表达时序查询。弥补了 SQL 在时序查询上描述能力不足的问题,并且可以结合 SQL 强大的表达能力,实现更加复杂的数据查询功能。

Range 查询还有更灵活的使用方式,具体使用参见文档: https://docs.greptime.com/reference/sql/range

更多实现逻辑请点击文档链接进行参考。

关于 Greptime 的小知识:

Greptime 格睿科技于 2022 年创立,目前正在完善和打造时序数据库 GreptimeDB,格睿云 GreptimeCloud 和可观测工具 GreptimeAI 这三款产品。

GreptimeDB 是一款用 Rust 语言编写的时序数据库,具有分布式、开源、云原生和兼容性强等特点,帮助企业实时读写、处理和分析时序数据的同时降低长期存储成本;GreptimeCloud 可以为用户提供全托管的 DBaaS 服务,能够与可观测性、物联网等领域高度结合;GreptimeAI 为 LLM 量身打造,提供成本、性能和生成过程的全链路监控。

GreptimeCloud 和 GreptimeAI 已正式公测,欢迎关注公众号或官网了解最新动态!

官网:https://greptime.cn/

GitHub: https://github.com/GreptimeTeam/greptimedb

文档:https://docs.greptime.cn/

Twitter: https://twitter.com/Greptime

Slack: https://greptime.com/slack

LinkedIn: https://www.linkedin.com/company/greptime/

展开阅读全文
  • 0
    感动
  • 0
    路过
  • 0
    高兴
  • 0
    难过
  • 0
    搞笑
  • 0
    无聊
  • 0
    愤怒
  • 0
    同情
热度排行
友情链接