您的位置:  首页 > 技术 > go语言 > 正文

实践GoF的23的设计模式:SOLID原则(下)

2022-03-02 12:00 https://my.oschina.net/u/4526289/blog/5470933 华为云开发者社区 次阅读 条评论
摘要:本文将讲述SOLID原则中的接口隔离原则和依赖倒置原则。

​本文分享自华为云社区《实践GoF的23的设计模式:SOLID原则(下)》,作者:元闰子。

在《实践GoF的23种设计模式:SOLID原则(上)》中,主要讲了SOLID原则中的单一职责原则、开闭原则、里氏替换原则,接下来在本文中将继续讲述接口隔离原则和依赖倒置原则。

ISP:接口隔离原则

接口隔离原则(The Interface Segregation Principle,ISP)是关于接口设计的一项原则,这里的“接口”并不单指Java或Go上使用interface声明的狭义接口,而是包含了狭义接口、抽象类、具象类等在内的广义接口。它的定义如下:

Client should not be forced to depend on methods it does not use.

也即,一个模块不应该强迫客户程序依赖它们不想使用的接口,模块间的关系应该建立在最小的接口集上。

下面,我们通过一个例子来详细介绍ISP。

上图中,Client1、Client2、Client3都依赖了Class1,但实际上,Client1只需使用Class1.func1方法,Client2只需使用Class1.func2,Client3只需使用Class1.func3,那么这时候我们就可以说该设计违反了ISP。

违反ISP主要会带来如下2个问题:

  1. 增加模块与客户端程序的依赖,比如在上述例子中,虽然Client2和Client3都没有调用func1,但是当Class1修改func1还是必须通知Client1~3,因为Class1并不知道它们是否使用了func1。
  2. 产生接口污染,假设开发Client1的程序员,在写代码时不小心把func1打成了func2,那么就会带来Client1的行为异常。也即Client1被func2给污染了。

为了解决上述2个问题,我们可以把func1、func2、func3通过接口隔离开:

接口隔离之后,Client1只依赖了Interface1,而Interface1上只有func1一个方法,也即Client1不会受到func2和func3的污染;另外,当Class1修改func1之后,它只需通知依赖了Interface1的客户端即可,大大降低了模块间耦合。

实现ISP的关键是将大接口拆分成小接口,而拆分的关键就是接口粒度的把握。想要拆分得好,就要求接口设计人员对业务场景非常熟悉,对接口使用的场景了如指掌。否则孤立地设计接口,很难满足ISP。

下面,我们以分布式应用系统demo为例,来进一步介绍ISP的实现。

一个消息队列模块通常包含生产(produce)和消费(consumer)两种行为,因此我们设计了Mq消息队列抽象接口,包含produce和consume两个方法:

// 消息队列接口
public interface Mq {
    Message consume(String topic);
    void produce(Message message);
}

// demo/src/main/java/com/yrunz/designpattern/mq/MemoryMq.java
// 当前提供MemoryMq内存消息队列的实现
public class MemoryMq implements Mq {...}

当前demo中使用接口的模块有2个,分别是作为消费者的MemoryMqInput和作为生产者的AccessLogSidecar:

public class MemoryMqInput implements InputPlugin {
    private String topic;
    private Mq mq;
    ...
    @Override
    public Event input() {
        Message message = mq.consume(topic);
        Map<String, String> header = new HashMap<>();
        header.put("topic", topic);
        return Event.of(header, message.payload());
    }
    ...
}
public class AccessLogSidecar implements Socket {
    private final Mq mq;
    private final String topic
    ...
        @Override
    public void send(Packet packet) {
        if ((packet.payload() instanceof HttpReq)) {
            String log = String.format("[%s][SEND_REQ]send http request to %s",
                    packet.src(), packet.dest());
            Message message = Message.of(topic, log);
            mq.produce(message);
        }
        ...
    }
    ...
}

从领域模型上看,Mq接口的设计确实没有问题,它就应该包含consume和produce两个方法。但是从客户端程序的角度上看,它却违反了ISP,对MemoryMqInput来说,它只需要consume方法;对AccessLogSidecar来说,它只需要produce方法。

一种设计方案是把Mq接口拆分成2个子接口Consumable和Producible,让MemoryMq直接实现Consumable和Producible:

// demo/src/main/java/com/yrunz/designpattern/mq/Consumable.java
// 消费者接口,从消息队列中消费数据
public interface Consumable {
    Message consume(String topic);
}

// demo/src/main/java/com/yrunz/designpattern/mq/Producible.java
// 生产者接口,向消息队列生产消费数据
public interface Producible {
    void produce(Message message);
}

// 当前提供MemoryMq内存消息队列的实现
public class MemoryMq implements Consumable, Producible {...}

仔细思考一下,就会发现上面的设计不太符合消息队列的领域模型,因为Mq的这个抽象确实应该存在的。

更好的设计应该是保留Mq抽象接口,让Mq继承自Consumable和Producible,这样的分层设计之后,既能满足ISP,又能让实现符合消息队列的领域模型:

具体实现如下:

// demo/src/main/java/com/yrunz/designpattern/mq/Mq.java
// 消息队列接口,继承了Consumable和Producible,同时又consume和produce两种行为
public interface Mq extends Consumable, Producible {}

// 当前提供MemoryMq内存消息队列的实现
public class MemoryMq implements Mq {...}

// demo/src/main/java/com/yrunz/designpattern/monitor/input/MemoryMqInput.java
public class MemoryMqInput implements InputPlugin {
    private String topic;
    // 消费者只依赖Consumable接口
    private Consumable consumer;
    ...
    @Override
    public Event input() {
        Message message = consumer.consume(topic);
        Map<String, String> header = new HashMap<>();
        header.put("topic", topic);
        return Event.of(header, message.payload());
    }
    ...
}

// demo/src/main/java/com/yrunz/designpattern/sidecar/AccessLogSidecar.java
public class AccessLogSidecar implements Socket {
    // 生产者只依赖Producible接口
    private final Producible producer;
    private final String topic
    ...
        @Override
    public void send(Packet packet) {
        if ((packet.payload() instanceof HttpReq)) {
            String log = String.format("[%s][SEND_REQ]send http request to %s",
                    packet.src(), packet.dest());
            Message message = Message.of(topic, log);
            producer.produce(message);
        }
        ...
    }
    ...
}

接口隔离可以减少模块间耦合,提升系统稳定性,但是过度地细化和拆分接口,也会导致系统的接口数量的上涨,从而产生更大的维护成本。接口的粒度需要根据具体的业务场景来定,可以参考单一职责原则,将那些为同一类客户端程序提供服务的接口合并在一起

DIP:依赖倒置原则

《Clean Architecture》中介绍OCP时有提过:如果要模块A免于模块B变化的影响,那么就要模块B依赖于模块A。这句话貌似是矛盾的,模块A需要使用模块B的功能,怎么会让模块B反过来依赖模块A呢?这就是依赖倒置原则(The Dependency Inversion Principle,DIP)所要解答的问题。

DIP的定义如下:

  1. High-level modules should not import anything from low-level modules. Both should depend on abstractions.
  2. Abstractions should not depend on details. Details (concrete implementations) should depend on abstractions.

翻译过来,就是:

  1. 高层模块不应该依赖低层模块,两者都应该依赖抽象
  2. 抽象不应该依赖细节,细节应该依赖抽象

在DIP的定义里,出现了高层模块低层模块抽象细节等4个关键字,要弄清楚DIP的含义,理解者4个关键字至关重要。

(1)高层模块和低层模块

一般地,我们认为高层模块是包含了应用程序核心业务逻辑、策略的模块,是整个应用程序的灵魂所在;低层模块通常是一些基础设施,比如数据库、Web框架等,它们主要为了辅助高层模块完成业务而存在。

(2)抽象和细节

在前文“OCP:开闭原则”一节中,我们可以知道,抽象就是众多细节中的共同点,抽象就是不断忽略细节的出来的。

现在再来看DIP的定义,对于第2点我们不难理解,从抽象的定义来看,抽象是不会依赖细节的,否则那就不是抽象了;而细节依赖抽象往往都是成立的。

理解DIP的关键在于第1点,按照我们正向的思维,高层模块要借助低层模块来完成业务,这必然会导致高层模块依赖低层模块。但是在软件领域里,我们可以把这个依赖关系倒置过来,这其中的关键就是抽象。我们可以忽略掉低层模块的细节,抽象出一个稳定的接口,然后让高层模块依赖该接口,同时让低层模块实现该接口,从而实现了依赖关系的倒置:

之所以要把高层模块和底层模块的依赖关系倒置过来,主要是因为作为核心的高层模块不应该受到低层模块变化的影响。高层模块的变化原因应当只能有一个,那就是来自软件用户的业务变更需求

下面,我们通过分布式应用系统demo来介绍DIP的实现。

对于服务注册中心Registry来说,当有新的服务注册上来时,它需要把服务信息(如服务ID、服务类型等)保存下来,以便在后续的服务发现中能够返回给客户端。因此,Registry需要一个数据库来辅助它完成业务。刚好,我们的数据库模块实现了一个内存数据库MemoryDb,于是我们可以这么实现Registry:

// 服务注册中心
public class Registry implements Service {
    ...
    // 直接依赖MemoryDb
    private final MemoryDb db;
    private final SvcManagement svcManagement;
    private final SvcDiscovery svcDiscovery;

    private Registry(...) {
        ...
        // 初始化MemoryDb
        this.db = MemoryDb.instance();
        this.svcManagement = new SvcManagement(localIp, this.db, sidecarFactory);
        this.svcDiscovery = new SvcDiscovery(this.db);
    }
    ...
}

// 内存数据库
public class MemoryDb {
    private final Map<String, Table<?, ?>> tables;
    ...
    // 查询表记录
    public <PrimaryKey, Record> Optional<Record> query(String tableName, PrimaryKey primaryKey) {
        Table<PrimaryKey, Record> table = (Table<PrimaryKey, Record>) tableOf(tableName);
        return table.query(primaryKey);
    }
    // 插入表记录
    public <PrimaryKey, Record> void insert(String tableName, PrimaryKey primaryKey, Record record) {
        Table<PrimaryKey, Record> table = (Table<PrimaryKey, Record>) tableOf(tableName);
        table.insert(primaryKey, record);
    }
    // 更新表记录
    public <PrimaryKey, Record> void update(String tableName, PrimaryKey primaryKey, Record record) {
        Table<PrimaryKey, Record> table = (Table<PrimaryKey, Record>) tableOf(tableName);
        table.update(primaryKey, record);
    }
    // 删除表记录
    public <PrimaryKey> void delete(String tableName, PrimaryKey primaryKey) {
        Table<PrimaryKey, ?> table = (Table<PrimaryKey, ?>) tableOf(tableName);
        table.delete(primaryKey);
    }
    ...
}

按照上面的设计,模块间的依赖关系是Registry依赖于MemoryDb,也即高层模块依赖于低层模块。这种依赖关系是脆弱的,如果哪天需要把存储服务信息的数据库从MemoryDb改成DiskDb,那么我们也得改Registry的代码:

// 服务注册中心
public class Registry implements Service {
    ...
    // 改成依赖DiskDb
    private final DiskDb db;
    ...
    private Registry(...) {
        ...
        // 初始化DiskDb
        this.db = DiskDb.instance();
        this.svcManagement = new SvcManagement(localIp, this.db, sidecarFactory);
        this.svcDiscovery = new SvcDiscovery(this.db);
    }
    ...
}

更好的设计应该是把Registry和MemoryDb的依赖关系倒置过来,首先我们需要从细节MemoryDb抽象出一个稳定的接口Db:

// demo/src/main/java/com/yrunz/designpattern/db/Db.java
// DB抽象接口
public interface Db {
    <PrimaryKey, Record> Optional<Record> query(String tableName, PrimaryKey primaryKey);
    <PrimaryKey, Record> void insert(String tableName, PrimaryKey primaryKey, Record record);
    <PrimaryKey, Record> void update(String tableName, PrimaryKey primaryKey, Record record);
    <PrimaryKey> void delete(String tableName, PrimaryKey primaryKey);
    ...
}

接着,我们让Registry依赖Db接口,而MemoryDb实现Db接口,以此来完成依赖倒置:

// demo/src/main/java/com/yrunz/designpattern/service/registry/Registry.java
// 服务注册中心
public class Registry implements Service {
    ...
    // 只依赖于Db抽象接口
    private final Db db;
    private final SvcManagement svcManagement;
    private final SvcDiscovery svcDiscovery;

    private Registry(..., Db db) {
        ...
        // 依赖注入Db
        this.db = db;
        this.svcManagement = new SvcManagement(localIp, this.db, sidecarFactory);
        this.svcDiscovery = new SvcDiscovery(this.db);
    }
    ...
}

// demo/src/main/java/com/yrunz/designpattern/db/MemoryDb.java
// 内存数据库,实现Db抽象接口
public class MemoryDb implements Db {
    private final Map<String, Table<?, ?>> tables;
    ...
    // 查询表记录
    @Override
    public <PrimaryKey, Record> Optional<Record> query(String tableName, PrimaryKey primaryKey) {...}
    // 插入表记录
    @Override
    public <PrimaryKey, Record> void insert(String tableName, PrimaryKey primaryKey, Record record) {...}
    // 更新表记录
    @Override
    public <PrimaryKey, Record> void update(String tableName, PrimaryKey primaryKey, Record record) {...}
    // 删除表记录
    @Override
    public <PrimaryKey> void delete(String tableName, PrimaryKey primaryKey) {...}
    ...
}

// demo/src/main/java/com/yrunz/designpattern/Example.java
public class Example {
    // 在main函数中完成依赖注入
    public static void main(String[] args) {
        ...
        // 将MemoryDb.instance()注入到Registry上
        Registry registry = Registry.of(..., MemoryDb.instance());
        registry.run();
    }
}

当高层模块依赖抽象接口时,总得在某个时候,某个地方把实现细节(低层模块)注入到高层模块上。在上述例子中,我们选择在main函数上,在创建Registry对象时,把MemoryDb注入进去。

一般地,我们都会在main/启动函数上完成依赖注入,常见的注入的方式有以下几种:

  • 构造函数注入(Registry所使用的方法)
  • setter方法注入
  • 提供依赖注入的接口,客户端直调用该接口即可
  • 通过框架进行注入,比如Spring框架中的注解注入能力

另外,DIP不仅仅适用于模块/类/接口设计,在架构层面也同样适用,比如DDD的分层架构和Uncle Bob的整洁架构,都是运用了DIP:

当然,DIP并不是说高层模块是只能依赖抽象接口,它的本意应该是依赖稳定的接口/抽象类/具象类。如果一个具象类是稳定的,比如Java中的String,那么高层模块依赖它也没有问题;相反,如果一个抽象接口是不稳定的,经常变化,那么高层模块依赖该接口也是违反DIP的,这时候应该思考下接口是否抽象合理。

最后

本文花了很长的篇幅讨论了23种设计模式背后的核心思想 —— SOLID原则,它能指导我们设计出高内聚、低耦合的软件系统。但是它毕竟只是原则,如何落地到实际的工程项目上,还是需要参考成功的实践经验。而这些实践经验正是接下来我们要探讨的设计模式

学习设计模式最好的方法就是实践,在《实践GoF的23种设计模式》后续的文章里,我们将以本文介绍的分布式应用系统demo作为实践示范,介绍23种设计模式的程序结构、适用场景、实现方法、优缺点等,让大家对设计模式有个更深入的理解,能够用对不滥用设计模式。

参考

  1. Clean Architecture, Robert C. Martin (“Uncle Bob”)
  2. 敏捷软件开发:原则、模式与实践, Robert C. Martin (“Uncle Bob”)
  3. 使用Go实现GoF的23种设计模式, 元闰子
  4. SOLID原则精解之里氏替换原则LSP, 人民副首席码仔

 

点击关注,第一时间了解华为云新鲜技术~

展开阅读全文
  • 0
    感动
  • 0
    路过
  • 0
    高兴
  • 0
    难过
  • 0
    搞笑
  • 0
    无聊
  • 0
    愤怒
  • 0
    同情
热度排行
友情链接